. S -c/

N8O -16298 7042
5 F.

e e - .
e ,f.'v&%‘fwﬁ%@:}m&r&%&m;mmwmwmwwm.:.g e e

SOFTWARE ENGINEERING AND ADA* IN DLSIGH

+ Don 0'Neill

18M FSD
* March, 1986
WADAS

*Ada 15 a registered trademark of the U.S. Govermment, Ada Joint Program Qffice

About the Author

Don 0'Neill has been with IBM's Federal System
Division (FSD) for the past twenty-six years. He
is presently the Ada Technical Assistant to the FSD
Vice President for Technology. As Manager of Soft-
ware Engineering for FSD (1977-1979), Mr. 0'Neill
was responsible for the origination of FSD software
strategies and the preparation of the FSD software
Engineering Practices. He received an IBM Qut-
standing Achievement Award for his contribution to
this effort. Mr. 0'Neill has been applying modern
software engineering on production software devel-
opment projects. He has recently been leading the
activity to prepare FSD for Ada use on projects.

Mr. O'Neil)l is a member of the Executive Board
of the [EEE Technical Committee on Software Engi-
neering. In addition, he has been a Distinguished
visitor of the IEEE Society. IMr. O0'Neill also
serves as a member of the AJAA Software Systems
Technical Committee., He received his BS degree in
mathematics from Dickinson College in Carlisle,
Pennsylvania.

PREFACE

Modern sofcware engineering promises significant
reductions in software costs and improvements fin
software quality. The Ada language is the focus
for these software methodology and tool improve-
ments. The community may have underestimated the
preparation for Ada, including compiler development
and education. More must be done. On the other
hand, the community may have underestimated the
benefits of Ada productivity and quality. Perhaps
expectations should be raised.

Software Engineeringy and Ada for Design over-
views the IEM fFS0 Software Ffactory approach, in-
cluding the software engineering practices that
quide the systematic design and deveclopnent of
software products and the management of the soft-
ware process, The revised Ada design lanquage
adaptation is revealed. This four level design
methodology 1s detailed -- including the purpose of

COPYRIGHT 1986 DY THE ASSOCIATION FOR COMPUTING
KACHINEZRY, IMNC. Permwission to copy without fee all or
pert of this materisl is granted provided that the
coples are not made or distributed for direct
consercisl adventsge, the ACX copyright notice and the
title of the publlication and its date sppear, and
notice is glven thet copying is by perwiseion of the
Assoclation fer Cosputing Mschinery. To copy othervisae,
or to republish, requires & fee and/or specific
permission.

each level, the management strategy that integrates
the software design activity with program mile-
stones, and the technical strategy that maps the
Ada constructs to each level of design. A complete
description of each design lavel is provided along
with specific design language recording guidelines
for each level.

Finally, some testimony is offered on educat:or,
tools, architecture, and metrics resulting from
project use of the four level Ada design langud e
adaptation.

Section 1

INTRODUCTION

Software may be throttling the industrial deve!-
opment of the United States. As the informatiun
society takes hold, the demands for software are
increasing. Furthennore, public expectation .
increasing too; people want software trat provide.
the right answers on time, everytime, an! does s
ifn a user-friendly manner, Software is 1ntendey U0
provide for the hanmnonious cooperation among people
and machines. People possess an infinite varizty
and machines do only what is instructed, notwitn-
standing the promise of artificial intelligerce.
As a result, the burden on software is substantia
indeed and is increasing.

Recently, software engineering has proviged for
the systematic design and development of soft.are
products and the management of the software oroc-
ess. The result should be quality software ;ruc-
ucts obtained through design, sustained tnrouin
development, and monitored through technical re-
views. We have always known that good projects are
ones with few errors at the end. We now know that
good projects are also ones with few errors at the
beginning. What may be needed now is a refinenent
of these methods, especially in the requirements
and specification areas, their broad application,
and preparation of adequate tools that re-enforce
and enforce their use while assisting in producty.-
ity gains.

Section 2

SOFTWARE ENGINCERING FACTORY

Software engineering provides for the systematic
design and development of software products and the
management of the software process. Software

B.4.1.1

ORIGINAL PAGE pg
OF POOR QUALITY

Q-8

DAL AN MO DAY 1 esnaeny IR
R R A N YRy S 0 Qs SR T i 4 e

engineering may be viewed in the form of a state
machine composed of ifnputs, transitions, outputs,
and retained data (Figure 2-1).

The 1inputs to the process include the qualified
people, labor saving tools, and practical technola-
9y needed to apply modern design, development, and
management practices in the production of usable
and reusable software products of sufficiently high
quality to ensure 1ife cycle benefits and confident
customer ownership. People today are required to
be highly qualified and equipped with specfalized
training in both software technoloyy and applica-
tions. Testimony from early Ada users indicates
that the training needs may be substantial. Harlan
Mills observed that as we shape our tools, our
tools may later shape us. Tools represent an
institutionalized expert system, knowledge base of
software methodology and style. Tool {nvestments
often lag behind their need. Practical technology
requires the application of basic principles from
advanced technologies repackaged into {ntuitive
approaches and simplified for use by industry
practitioners and acceptance by customers. Tech-
nology must employ an understandable conceptual
model to assist the transition from user need to
usable product.

The transitions of the software engineering
state machine are governed by the software engi-
neering practices for design, development, and
management, applying across the full life cycle.
Software design includes methods for producing and

verifying modular designs and structured programs.
Designs are recorded using a design language based
on Ada, fncluding both procedural designs and data
designs. Advanced design ensures semantic corre-
spondence of specifications through data dictionar-
fes. Systematic design provides for functional
allocation and decomposition of procedures and
data. Systematic programming includes the elabora-
tion of program designs using stepwise refinement,
program design language, and correctness tech-
niques, Taxonomy fincludes a proper program with 2
single entry and single exit, a prime progran
composed of zero or one predicate constructs, inner
syntax of data refinement and operations and tests.
The Ada based design language used to record de-
signs assists the reasoning of the designer and his
communication with others in getting the design
right, knowing it, and convincing others. Software
development includes the methodology for the early
implementation and integration of detailed designs
into product increments represented as source code
libraries, configuration controlled through library
hierarchies. In addition to increnental releases,
the concepts of rapid prototyping, software first,
and component reuse are being refined for routine
use on projects in the future. Software manayement
assures the effe tive application of qualified
people within a predictable process to originate ¢
quality product that satisfies performance require-
ments on schedule within cost. The use of Software
Development Plans and technical reviews ensure on
accurate view of status.

THE SOFTWARE FACTORY

INPUTS PROCESS OUTPUTS
MODERN USABLE

PEOPLE SOFTWARE PRODUCTS
ENGINEERING QUALITY

PRACTICES PRODUCTS

TECHNOLOGY LIFE CYCLE
BENEFITS

CONFIDENT
REUSABLE PRODUCT

figure 2-1. Software Factory

OQRIGINAL PACE ™8
OF POOR QUALITY

B.4.1.2

A

The outputs of the process include usable prod-

“ucts of high quality that may be reusable capable

of assuring confident customer ownership. Usable
products are those that operate hammoniously within
the user organization. They are adaptable to new
requirements and feature userfriendly interfaces.
The reward for this may be friendly users. Quality
products are those that have few errors at the end.
These are the same ones that have few errors at the
beginning., A reusable product is one that contin-
uves to meet changing requirements through product
enhancements., Futhermore, reusable products are
transportable to other systens for similar uses.
The Ada language promises to provide for software
reusability. Using artificial intelligence, a
components library of specifications can be inter-
rogated for software components needed for new
applications. As the industry becomes skillful and
expert at matching existing products with new
needs, the software factory may become a reality.

Section 3

SYSTEMATIC USE OF ADA AS A DESIGN LANGUAGE

Flirting with Ada? Careful. She is more than a
programming language but less than a compiler for
many. In M%gatrends. John Naisbitt points out that
trends are like horses. If you want to ride them,
it pays to go in the same direction the horse is
already traveling, He also points out that fads
originate at the top, tend to peak, and then fade
out. On the other hand, trends are bottom up,
possess broader support, and persist.

The use of Ada as a programming language may
correspond to Naisbitt's characterization of a fad,
top down, perhaps explaining its sluggish begin-
ning. Ffor Ada the prog-ammning language, this is
the awkward period between promise and delivery.
On other hand, the use of Ada as a design language
may be a trend, arising from the bottom as a popu-
lar choice. It is happening today.

A design language may be used for a number of
reasons. It provides the facility to record design
decisions. Once recorded, these design decisions
can be shared with others forming the communication
baseline among system engineers, software engi-
neers, and integration and test engineers. It
provides the basis for the designer to be more
convincing in the defense of his design. [t pro-
vides others with a rlear reference point to focus
their criticisms. The result is a better design.
The use of Ada as a design language encourages good
software engineering while at the same time permit-
ting the design to obtain rigor in syntax and
semantics through the use of Ada compiler product
tools. Ada as a design language provides a plat-
form for systematically accomplishing rapid proto-
typing through use of the emerging software design
and product ftself. In ways yet to unfold, Ada
design language may also be a useful basis for
assisting the access of reusable components. To be
able to support these various uses systematically,
Ada as a design language needs to be {integrated
fnto a software engineering methodology.

3.1 Four Level Design

CF POOR QuALITY

An Ada based software design methodology has
been adapted from the software engineering prac-

tices discussed in advanced design, systenatic
design, and systematic programning. This adapla-
tion features four levels of design supported by d
management strategy and a technical strategy. The
management strategy maps the first two ‘levels of
design to the specification process and its review
and the last two levels of design to the detsiled
design process and {its review. The tgchnlc:il
strategy purposcfully and rigorously utilizes the
expressive power of Ada at each level of design by
mapping particular Ade constructs for use at each
level.

The purpose of each level of design (Figure 3-1)
considers the expected audience hierarchy within 2
project, ranging from readers to writers and 1n-
cluding progranmers, engineers, and managers.
Early design levels must be intuitively understand-
able by all members of the audience and cannrot
depend on everyone being fully Ada literate. To
support this need, Level 1 design is intended ¢35
the user contract. The user should be thought of
as other software products that might utilize or
interface with the software being designed 25
opposed to the end user of the system. tevel 2
design portrays the design parts and their rel.:-
tionships both data interfacing and tasking. ..}
3 design elaborates a detailed functignal R
that is independent of the target operatingy - ,-
and instruction set architecture. Finally, La.o? o
designs are detailed designs that are full, ‘“:r-
geted to the operating system and irstructy ot
architecture, rcady for implementation consiior -
efficiency and capacity constraints.

FOUR LEVEL DESIGN

METHODOLOGY THAT RIGOROUSLY UTILIZES THE EXPRESSINE
POWER OF ADA PDL AT EACH LEVEL

LEVEL 1 USER CONTRACT

LEVEL 2 DESIGN PARTS AND RELATIONSHIP

LEVEL 3 DETAILED FUNCTIONAL DESIGNS INDEPENDENT (iF
TARGET
— OPERATING SYSTEM
— INSTRUCTION SET ARCHITECTURE

LEVEL 4 DETAILED DESIGNS FULLY TARGETED READY f.'0
IMPLEMENTATION

Figure 3-1. Ffour Level Design

3.2 Management Strateqgy

. \
Ry
] . -

The managenent strategy for the four
design approach (Figure 3-2{ maps levels 1 and
the specification review milestone and levels ¥ a-:
4 to the design review milestone. The specit::a-
tion review milestone equates to the Prejimingr,
Desfgn Review (PDR), the design review milestone
equates to the Critical Design Review (CDR). In
the M(LSTD 2167 process level 1 and 2 designs are
fncluded in the Software Top Level Design Document;
level 3 and 4 designs are included in the Software
Detailed Design Document.

Beginning with Level 1, the specification is
fnput to the software design process. A level |
design {s produced and recorded in the fomm of an
Ada Package Specification. The Level 1 design ang

B.4.1.3

SOFTWARE ENGINEERING AND ADA IN DESIGN

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4
USER CONTRACT|[=~ | PARTS DESIGN FUNC. DESIGN DETAIL DESIGN
r-—---—-——---————--———————————————ﬁ
{ !
| I
| 1
| METRICS l
| SPECIFICATIONS -t 4 REVIEW |
| \ |
| 1 !
l !'—""'-'L"—"‘\ A ‘
! | !
| I DESIGN I I
TO COST
|] | !
! y tmm - '
| |
] |
| LEVEL . DESIGN !
| DESIGN T REVIEW |
| |
| {
| I
L e et e e e e —— — e e e . e o m — —— — — — —— ———— —_
Figure 3-2. Mapagement Strategy

any reuse candidates are subjected to a design
review. The design review may be conducted elec-
tronically, or it may be conducted through a meet-
ing of team members. Participants are highly
trained experts committed to reviewing the design
for conpleteness, correctness, usability, perforn-
ance, and overall user satisfaction. Each reviewer
must be personally satisfied with every aspect
before the desiyn review is concluded. The appli-
cation of modern software engineering practices and
their enforcement through a unanimous concensus of
these highly trained experts is expected to provide
a powerful impetus to dramatically improved product
quality.

Once the design is satisfactory, the metrics
assocfated with the software engineering process
and the software product are reviewed and expec-
tations revised. For the software engineering
process the metrics include productivity and quali-
ty expectations. For the software product these
metrics include complexity measures, reliability,
and computer resource loading. Ihese metrics are
reviewed for compliance with budgets, perhaps
necessitating adjustments fin the design in an
effort to achfeve compliance. The specification
ttself may need to be reassessed and partitioned

into essential requirements and desirable features
Certain desirable features may need to be elimi-
nated or reduced in order to canply with management
budgets.

At Level 2, the design for each canponent part
identified in level 1 {s recorded as an Ada package
specification and {ts body. The Level 2 Ada pack-
aje specification and body are evaluated for recuse
candidates, continuing the systematic exploitation
of reusability. The design review is conducted, as
in Level 1. Metrics data is a.quired and analyzed
for Level 2 with the design to cost procedure
followed if necessary. The Software Top Level
Design Document 1is then subjected to th- Prelimi-
nary Design Review (PDR), Throughout this process,
systems engineers and software engineers work in a
dependable relatifonship 1{n shaping and fitting
designs to meet user needs.

At levels 3 and 4, the design for each 1den-
tified subunit is recorded as an Ada procedure with
its accompanying intended function comnentary
Procedure CALL semantics and intended function
commentary are evaluated for reuse candidates,
again continuing the systanatic exploitation of

B.4.1.4

ORIGINAL PAGE 1g
OF POOR QuUALITY

P AR L i oo o

reusability. Design reviews are conducted. Met-
rics data 1is analyzed. The design to cost proce-
dure continues to operate but with diminished
flexibility since the specification has been base-
lined at POR.

3.3 Technical Strateqy

The Technical Strateyy (Figure 3-3) governs the
mapping of Ada constructs to each level. This
mapping is intended to follow the architectural
line of the language. Futhemmore, the construct
mapping by level provides a natural partitioning
suitable for educating both readers and writers a
little at 2 time.

Ada constructs are mapped to each level for
outer and inner syntax., Outer syntax includes
organizing units and control structures, both
sequential and asynchronous. The 1{nner syntax
provides the format for expressing data and the
operations and tests on the data. The constructs
are assigned to each level with the objective of
satisfying the purpose of that level. Once as-
signed to a level, a construct is permitted to be
used in subsequent levels.

The Ad: product form for Level | is the package
specification used to express the user contract.
This calls for an organizing outer syntax along
with finner syntax commentary. Level 1 is limited
to a few self evident constructs needed to accom-
plish its purpose. Those constructs are listed in
Figure 3J-4. They can be conveniently organized
into a package specification template used to
govern the style of the design recording. Other

desiyn recording guidelines way be set forth,
including naming convention, commentary for in-
tended functions, and key words 1in structured

conmentary useful in encouraging the use of the
state machine model.

The product forn for level 2 is the package
specification and package body used to express the
design parts and their relationship. This calls
for an outer syntax of structuring and tasking
constructs. The inner syntax may be expressed as
Ada abstractions, including abstract data types.

Procedural elaborations are not carried out 1In
Level 2 but instead are pernitted to cppesr 45
procedure calls. The additional Level 2 coanstr-ucts
are shown in Figure 3-4. Those too can be conven-
fently organized into package specificgiior 4nd
package body templates used to govern the style of
the design recording. Design recording quidelines
of Level | may be expanded to include the ahstract
data types permissible.

The product form for lLevel 3 is the procedure
elaboration used to express a detailed functional
desiygn, This calls for a full conplement of outer
syntax function expressions and inner syntax data
refinement, including predefined data types and Ada
primitives. The additional Level 3 constructs dre
shown in Figure 13-4, Here too, procedures and task
templates are used to guide the style of the design
recording. Additional recording guidelines may be
stated. Furthermore, to control the quantity of
the Ada PDL being produced, Level 3 may be lunited
to the elaboration of only those procedures precent
in Level 2 as procedure calls.

The product formn for Level 4 is the prucedure
elaboration, as well as function elaborations used
to express a fully targeted, detailed design. .1}
MILSSTD 1815A is available at Level 4 (sce Fy,ure
3-4).

Section 4

CONCLUSION

Software Engineering and Ada in Design 15 i 4n
early milestonc report on the systematlic use o! *id4
as a desiyn language. Fron this experience, 't 1s
clear that the preparation for the use of Atz nas
been underestimated in several areas, includin; ‘Ja

compiler acquisition, tool integration, and «:,la-
tion.
The Ada comupiler acquisition difficulties n

industry are well known., The need for Ada procu:ts
during the design activity has .eceived less atten-
tion. It is nice to have an Ada front-end product
for semantic and syntax analysis during le.e's 1

TECHNICAL STRATEGY

INNER SYNTAX

OUTER

PURPOSE SYNTAX FUNCTION DATA
LEVEL 1 USER CONTRACT ORGANIZING COMMENTARY COMMENTARY
LEVEL 2 DESIGN PARTS AND STRUCTURING, PROCEDURE CALLS ABSTRACT DATA

RELATIONSHIPS TASKING TYPES
LEVEL 3 ODETAILED FUNCTIONAL - EXPRESSIONS PREDEFINED DATA

DESIGNS INDEPENDENT TYPES,

OF TARGET ADA PRIMITIVES
LEVEL 4 DETAILED DESIGNS - REFINEMENT REFINEMENT

FULLY TARGETED

Figure 3-3. Technical Strateqy
B4 15 ORIGINAL PAGE 15

CF POOR QUALITY

INNER-SYNTAX

OUTER
PURPOSE . SYNTAX FUNCTION DATA
LEVEL Y USER CONTRACT PACKAGE SPECIFICATION COMMENTARY COMMENTARY

PROCEDURE SPEC

TASK SPEC
WITH, USE

LEVEL 2 ODESIGN PARTS AND PACKAGE BODY
RELATIONSHIPS IS SLPARATE
BLGIN
IF TIHEN
CAST
LOOP (WIHILE

FOR, EXIT WHEN)

FUNCTION
ACCEPT, DO
SELECT

LEVEL 3 DETAILED FUNCTIONAL ELSIF
DESIGNS INDEPENDENT OF WHEN
TARGET OPERATING
SYSTEM AND INSTRUCTION
SET ARCHITECTURE

LEVEL 4 DETAILED DESIGNS
FULLY TARGETED
READY FOR
IMPLEMENTATION

ABSTRACT DATA
TYPES

PROCIDUNAL CALLS GENERIC INSTANTIATIONS OF

TASK ENTHY CALLS ABSTRACY DATA STRUCTURES
PRIVATE DATA TYPES
DERIVED DATA TYPES

TASK TYPES
HLI SRR ALN) ADA DATA TYPES
REM, MOD RECORD
OR, AND. XOR, NOT ARRAY
RANGE, ABS RANGE
-, -, = = ACCESS TYPE
TERMINATE CONSTANT
DELAY SUBTYPE
EXCEPTION, RAISE
PRAGMA DELTA, DIGITS
ABORY FOR, USE, AT

ADA CONSTRUCTS

Figure 3-4.

and 2. It is a nece._ity tc have this tool availa-
ble and ready for use during levels 3 and 4.
Without 1{t, the reenforcement of Ada education
through the design activity is lost. Furthernore,
the error discovery opportunity is postponed to
downstream, The design inspection accoupanying
each design level needs the output of the Ada
front-end. Where rapid prototyping 1is intended,
the Ada compiler itself is needed to pemiit code
generation and execution,

For early Ada projects, the education of the
project tean may need to be inteyrated with the
desiyn activity, One approach to this is to train
people in one design level at a time, fo' lowed by
the performance of the design activity and its
review. In this way, the training schedule can be
distributed throughout the performance period, the
training for each level can be refined based on the
results of the preceding desiyn review, and project
people new to Ada can progress through the experi-
ence sharing problens dand obtaininy assistance
within the team, In the four level design ap-
proach, Level 1 represents only four constructs,
al)l contained in a template. As & result, there is
an early success for the new Ada PDL designer.
Level 2 adds more constructs and is again guided by
templates, assisting success. Level 3, however,
represents the first time the Ada POL designer must
operate substantially on his own with a large
number of Ada constructs. At Level 3, design
reviews may result in a substantisl reworking of
the desiyn. By Level 4, the Ada experience begins
to pay off, and Ada POL designers are completing
their designs with confidence.

In formulating architectures for Ada software
designs, new thinking may be nceded. linportant

Ada Constructs

benefits are possible in Ada through modern soft-
ware engineering. To obtain these benefits,
software designs must make the transition from
designs that simulate data flow to desiyns tnat
encapsulate data in ways natural to the applicatior
providing only as much visibility as necessary ana
as much infonnation hiding as possible. Further-
more, to obtain these benefits, the Ada tasking
model needs to be exploited at appropriate levels
in the design. The interface with casmercia!
software products needs to be accamnodated in a way
that retains the cost benefits of these products,
but does not doninate the software architecture.
More work is needed in uniform design morpnala;ies
for Ada to provide useful Ada architecture wotels
for early users, as well as the framewora fur
exploiting reusable components by all wusers.

Very little is known about Ada metrics. As a
result, there are many questions about the si:e of
Ada proyrams and designs, Ada productivity, nfa
quality, and Ada performance. The early experience
with Ada PDL seems to show that a low ratio may
exist between Ada source lines and Ada des'yn
lines. It may be 2:1 or 3:1. wWhere Ada 15 both
the target language and the design language, the
Ada POL is part of the product. In this case,
insight about the ratio may assist the allocation
of effort and schedule between the design and code
activities. The recent experience showed that the
combined Level 1 and 2 ratio was about 25:1, Leve!
1-3 about 10:1, and Level 1-4 less tnan 5:1. Mot
enough §s known to use these results as managemenc
budgets.

The revised 1BM FSD four level Ada PDL wneth-
odology has demonstrated some important benefits in
recent use (Figure 4-1). Expanding the audience of

ORIGINAL PAGE IS B.4.1.6

OF POOR QUALITY

BENEFITS: FOUR LEVEL ADA PDL METHODOLOGY

e AUDIENCE — BOTH TECHNICAL AND NON-TECHNICAL
¢ PRODUCTIVITY — TEMPLATES AT LEVEL AND CONSTRUCT
* QUALITY - MINIMUM CYCLOMATIC COMPLEXITY

¢ PERFORMANCE — FOCUS ON TASKING AT LEVEL 2

* PORTABILITY — FULLY TARGET INDEPENDENT LZVEL 3

¢ REUSABIL!TY — LEVEL FORMAT PERMITS EFFECTIVE
ACCESS FROM COMPONENTS LIBRARY
» ADA TRAINING — LEARNING AND USING ADA, A LITTLE AT A
TIME, IS AN EFFECTIVE APPROACH TO ADA
TRAINING, ALONG ARCHITECTURE LINE

* MAINTAINABILITY — FOUR LEVELS PROVIDE A STAGED, LAYERED
INTRODUCTION TO DESIGN AND
IMPLEMENTATION DETAILS

¢ PREDICTABILITY -- MEETING COST AND SCHED!'LE AS ASSISTED
BY DESIGN TO COST FEATURE OF
MANAGEMENT APPROACH

figure 4-1. Benefits: Four Level Ada PDL Methodology

design reviewers from technical to non-technical
permits useful and needed user input to the conple-
tion of the specification and to early design
decisions. This is made possible by a training
program, patterned after the four levels, that
teaches Ada a little at a time along the architec-
tural line of the language. Furthemnore, the
templates that govern the product style at each
level provide a crutch for the early Ada user both
reader and writer, a boost to productivity, and the
assurance of uniformity ir design style. Product-
jvity may be given a more substantial boost whern
reuse of existing Ada components can be obtained.
The Level 1 template format may assist this compo-
nent reusability by providing the semantics needed
to access & components library. Managing and
meeting cost ard schedule budgets is assisted by
the systemalic use of the design to cost feature
embedded in each design level. Once completed, the
four levels of Ada PDL provide the layered intro-

B.4.1.7

duction to desiyn details needed by the maintaine:
to learn design details as needed and to crijingt.
any required product adaptations with confider o
Nesigns producud with the four level Ada POl ~oetr -

odology tend Lo ULu the simplified dJesiyns trae
result from modern software engineerinj;. At tro
same time these designs consider perforaance ro-

quirements and wmeeting real time deadlines thru,.
the tasking focus at tevel ¢ and throuyh tre wetl-

rics at every ‘ovel, rinally the nmethodalo:,
supports portability through the Level 3 tarje:
independence of operating syster and instructicos
set architecture.

Although true that the community has unler-

estimated the preparation for Ada, this preparatrir
has been started and is underway. It may also be
true that the couaunity has underestimated tro
benefits of Ada which are substantial and are s1:1)
being discovered,

ORIGINAL PAGE IS
OF POOR QUALITY

D % TR

818! 10GRAPHY

1.

20

IOM Systems Journal,

“Reference Manual for the Ada Programming Lan-
guage (MIL-STD-1815A)," Department of Defense,
17 February 1943,

“Methodnan 11,* Institute for Defense Analysis
(I1DA), Memorandum Report K-11, November 1984.

“Survey of AMa™ - Based PDL's." Nuval Avionics
Cen;er Technical Publication, TP-598, January
1985.

Naisbitt, J., “Megatrends: Ten hew Directions
I;;;sforming Our Lives,” Warner Books, Inc.,

0'Nefll, D., “Software Engineering Program,”
December 1980, Vol. 19,

No. 4

0'N2{11, D., “An Integration Engineering Per-
spective,“ The Journal of Systems and Software,
3, 77-83 (1983).

ot SALITINE N R LU

1.

8.

9‘

0'Neil), D., “At B4 - A Strategy for Softwdre
Management,®” Information Systems News, February

1981,

*Ada as a Desiyn Language,” [EEE Computer Soci-
ety Working Group (P. 990), Oraft 1985.
0'Neil)l, D., “An Overview of Gloval Positioning

System Software Design,” Software Engineering
Exchange, October 1980, Vol. 3, No. l.

Key Words

Software Factory
Four Level Design
Ada based design
Management Strategy
Technical Strategy
Ada Constructs

B.4.1.8

